Abstract

The reductive decomposition of calcium sulfate (CaSO4) to calcium sulfide (CaS) was one of the most important methods for anhydrite resource utilization. When CaSO4 was decomposed reductively by carbon monoxide (CO), usually there were CaS and/or calcium oxide (CaO) in the decomposition products of CaSO4 depending on the reaction temperature and reactant concentrations. In this paper, the mechanism of CaSO4 reductive decomposition by CO was studied in the framework of density functional theory (DFT). In the calculation, the exchange-correlation term was approximated by Perdew–Wang (PW91), a functional within the generalized gradient approximation (GGA) family. To study the interaction of CO and CaSO4, the transition states of CaSO4 decomposition and the minimum energy path (MEP) were analyzed. The results showed that the CaS product could be obtained when CaSO4 was reduced by CO with the 4:1 stoichiometric ratio of CO and CaSO4, and the decomposition of CaSO4 to CaSO3 was the rate-determining step, and ac...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.