Abstract
The configurations, stability, electronic properties and CO adsorption of the ground state Pd[Formula: see text]Al (n = 1–5) clusters are calculated by the density functional theory (DFT). The results reveal that the lowest-energy configurations of Pd[Formula: see text]Al clusters inherit the geometries of the host Pd[Formula: see text] clusters to a larger extent. The C atom in CO molecule prefers to approach more Pd atoms rather than Al atoms in small Pd[Formula: see text]Al clusters. Pd[Formula: see text]AlCO clusters have higher average binding energies than the corresponding small Pd[Formula: see text]CO clusters except for PdCO. AlCO and Pd3AlCO clusters possess better kinetic stability than their neighbors by the HOMO–LUMO gaps. Except for Pd6clusters, CO molecule prefers to adsorb on small Pd[Formula: see text] clusters rather than Pd[Formula: see text]Al clusters. Both the Al–Pd bonding in Pd[Formula: see text]Al clusters and C–Pd bonding in Pd[Formula: see text]AlCO clusters have certain covalent characters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.