Abstract

Using density functional theory, we investigate the structure of the double water bilayer with or without coadsorption of CO on Pt(111). The double water bilayer consists of two bilayers. Each bilayer is buckled with every second water molecule being closer to the surface than every other water molecule. CO is found to adsorb most strongly when substituting in the first bilayer, the water molecule closest to the surface. Dissociation of H2O in the water bilayer (with or without CO) is further considered. A great number of pathways for the dissociation are studied. These include homolytic pathways where both dissociation products end up adsorbed on the Pt surface and heterolytic pathways where only the OH is adsorbed, while a proton is transferred to the water adlayers. We find that the heterolytic dissociation pathways are energetically more favorable than the homolytic ones, yet they are all rather endothermic. The most favorable pathways found have reaction energies of 0.60 and 0.52 eV without and with CO present. The corresponding activation energies are 0.99 and 0.53 eV, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.