Abstract
In the present work, we have studied from a theoretical perspective the geometry and electronic properties of the series of related compounds 2,5-bis(phenylethynyl)-1,3,4-thiadiazole, 2,5-bis(phenylethynyl)-1,3,4-oxadiazole, and 2,5-bis(phenylethynyl)-1,2,4-triazole as candidates for electron-conducting polymers and compounds with desirable (opto)electronic properties. The effect of the ethynyl group (-C[Triple Bond]C-) on the structure and electronic properties was also studied. The influence of planarity on electrical conductivity has been studied by a natural-bond-orbital analysis. The (opto)electronic properties and conducting capability were investigated through the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, excitation energy, bond length alternation, LUMO energy, electron affinities, and intramolecular reorganization energy. Finally, the evolution of some properties such as optical bandgap and electron affinity with the increase of the number of repeat units in the oligomer chain has been checked.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.