Abstract

Analysis of the multimode Jahn–Teller (JT) distortion in anions and cations of corannulene and coronene is presented, combining multideterminantal-DFT (MD-DFT) and Intrinsic Distortion Path (IDP) methods. The JT distortion is derived from the sum of contributions of all possible JT active normal modes. The CC stretching modes play the most important role in the stabilization of the systems, in all investigated species, pushing the nuclei toward the minima on the potential energy surface. The further inspection of the IDP revealed that the relaxation of the geometry arrives in the final part of the path and is encountered by the softest vibrational modes. The same trend was observed in cyclopentadienyl radical, benzene anion, benzene cation and fullerene ions. This gives microscopic origin into the mechanism of the distortion and provides general behavior of the JT effect in these similar molecules. Moreover, MD-DFT and IDP, as fast and fully non-empirical approaches, can be considered as a reliable tool for better understanding of the JT effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.