Abstract

The potential energy surface for the rearrangement of BF(3)-coordinated 2,3,3-trimethyl-1,2-epoxybutane to 2,3, 3-trimethylbutanal has been investigated at the B3LYP/6-31G level of theory. SCRF(SCI-PCM) solvent calculations and theoretical primary and secondary kinetic isotope effects at the same level of theory provide support for a two-step process with ring opening of the BF(3)-coordinated epoxide to a tertiary carbocation intermediate followed by hydride/deuteride migration to give aldehyde. The experimentally measured primary isotope effect (k(H)(D)/k(D)(H)) requires a correction for an appropriate secondary isotope effect to give a true isotope effect k(H)(H)/k(D)(H). For the lowest energy pathway for hydride migration, the calculated secondary kinetic isotope effect is 0.92, which when applied to the experimentally measured isotope effect of k(H)(D)/k(D)(H) = 1.73 gives a revised "true" primary kinetic isotope effect of k(H)(H)/k(D)(H) = 1.59. This compares with a calculated value of 2.01. From intermediate 15, migration of the C1-H(a) proton via 19 is energetically favored over C1-H(b) migration via 18 and this result is consistent with the experimental results in which hydride migration of the proton cis to the methyl is favored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call