Abstract

This study investigated the interaction between carbon nanostructures, including pristine graphene, defective graphene with monovacancy, graphene oxide (GO), and tripeptide arginine-glycine-aspartic acid (RGD), by density functional theory. The results from the adsorption energy analysis show that the strongest adsorption is observed when RGD is parallel to graphene surfaces, in which graphene interacts with all three functional groups of RGD, including NH3+, COO–, and guanidine. The interaction of NH3+···π was stronger than that of guanidine–NH2···π and COO–···π. The vacancy improves the ability of graphene to attract RGD because of active dangling C atoms. GO has a stronger interaction with RGD than the pristine and defective graphene because of O-containing groups. The comparison of the GO model with the OH, epoxy, and mixed OH/epoxy groups reveals that various O-containing groups have distinguishing binding abilities with RGD. Water molecules strengthen the interactions between graphene and RGD, where...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.