Abstract

We report the structures and energies from first principles density functional calculations of 12 different reconstructed (111) surfaces of silicon, including the 3x3 to 9x9 dimer-adatom-stacking fault (DAS) structures. These calculations used the Perdew-Burke-Ernzerhof generalized gradient approximation of density functional theory and Gaussian basis functions. We considered fully periodic slabs of various thicknesses. We find that the most stable surface is the DAS 7x7 structure, with a surface energy of 1.044 eV/1x1 cell (1310 dyn/cm). To analyze the origins of the stability of these systems and to predict energetics for more complex, less-ordered systems, we develop a model in which the surface energy is partitioned into contributions from seven different types of atom environments. This analysis is used to predict the surface energy of larger DAS structures (including their asymptotic behavior for very large unit cells) and to study the energetics of the sequential size change (SSC) model proposed by Shimada and Tochihara for the observed dynamical reconstruction of the Si(111) 1x1 structure. We obtain an energy barrier at the 2x2 cell size and confirm that the 7x7 regular stage of the SSC model (corresponding to the DAS 7x7 reconstruction) provides the highest energy reduction per unit cell with respect to the unreconstructed Si111 1x1 surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.