Abstract

Density functional theory has been applied to gain insight into the Cp*Rh(OAc)2-catalyzed C-H activation and intermolecular annulation of benzamide derivatives with allenes. The study shows that the reactions proceed in three steps: (1) C-H activation induced by Rh catalyst reacting with benzamide derivatives, (2) carborhodation of allene, and (3) regeneration of Rh catalyst. The results indicate that the N-H deprotonation makes the following C-H activation much easier. The regio- and stereoselectivities of 1a (N-pivaloyloxy benzamide)/2a (cyclohexylallene) and 1b (N-pivaloyloxy-4-methyl-benzamide)/2b (1,1-dimethyl allene) depend on the allene carborhodation step. The steric hindrance effect is the dominant factor. We also discuss the reaction mechanism of 1c (N-methoxy benzamide)/2a. The chemoselectivity between 1c/2a is determined by the N-O cleavage step. Replacement of OPiv by OMe leads to loss of the stabilization effect provided by C=O in OPiv. Additionally, Cp*Rh(OAc)(OPiv) is produced in the Cp*Rh(OAc)2 regeneration step, which can work as catalyst as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.