Abstract

The adsorption of NHx fragments and oxidation of them by O and OH on the Rh(111) crystal surface have been studied using first-principles density-functional calculations. The stability and configurations of OHx and NHx have been investigated and characterized using frequency analysis. Several paths of NHx (x = 1−3) oxidation with O and OH and reverse elementary processes have been determined. The transition states have been determined and analyzed in detail. The activation barriers and thermodynamic and kinetic data have been calculated for all of the elementary steps. The calculations have shown that atomic oxygen does not promote ammonia decomposition. The elementary reactions with O are endothermic, and they have significant barriers, comparable with ammonia dehydrogenation barriers [Popa, C.; Offermans, W. K.; van Santen, R. A.; Jansen, A. P. J. Phys. Rev. B 2006, 74 (15), 155428-1−155428-10].1 The OH fragment does promote ammonia decomposition. The elementary reactions are exothermic or slightly endo...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.