Abstract

Density functional theory calculations are carried out to investigate the adsorption properties of Li+ and Li on twenty-four adsorbents obtained by replacement of C atoms of coronene (C24H12) and circumcoronene (C54H18) by Si/N/BN/AlN units. The molecular electrostatic potential (MESP) analysis show that such replacements lead to an increase of the electron-rich environments in the molecules. Li+ is relatively strongly adsorbed on all adsorbents. The adsorption energy of Li+ (Eads-1) on all adsorbents is in the range of − 42.47 (B12H12N12) to − 66.26 kcal/mol (m-C22H12BN). Our results indicate a stronger interaction between Li+ and the nanoflakes as the deepest MESP minimum of the nanoflakes becomes more negative. A stronger interaction between Li+ and the nanoflakes pushes more electron density toward Li+. Li is weakly adsorbed on all adsorbents when compared to Li+. The adsorption energy of Li (Eads-2) on all adsorbents is in the range of − 3.07 (B27H18N27) to − 47.79 kcal/mol (C53H18Si). Assuming the nanoflakes to be an anode for the lithium-ion batteries, the cell voltage (Vcell) is predicted to be relatively high (> 1.54 V) for C24H12, C12H12Si12, B12H12N12, C27H18Si27, and B27H18N27. The Eads-1 data show only a small variation compared to Eads-2, and therefore, Eads-2 has a strong effect on the changes in Vcell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.