Abstract

The adsorptive removal of sulfur-containing compounds such as thiophene and dibenzothiophene derivatives from transportation fuels has received extensive attention because of the economical and environmental advantages of adsorptive removal compared to the hydrodesulfurization process. Metal-ion-exchanged zeolites have been known to exhibit high desulfurization performance. However, zeolites induce side reactions because of their strong acidity. Accordingly, silica-based adsorbents showing lower acidity have potential for the desulfurization adsorbent. In this study, to facilitate the development of efficient desulfurization adsorbents, the mechanisms of benzothiophene and naphthalene adsorption onto silica surface were investigated using density functional theory (DFT) in conjunction with experimental approaches. Both the computational and the experimental results suggested that the sites at which benzothiophene and naphthalene adsorb onto silica gel are different types of silanol groups. The adsorption sites of benzothiophene at the initial stage were vicinal-type and/or geminal-type silanols and the final adsorption sites were isolated-type silanols. In addition, the results of DFT calculations suggest that multilayer adsorption might occur. In contrast, the adsorption sites of naphthalene at the initial stage were vicinal-type silanols. Afterward, multilayer adsorption through a T-shape interaction might occur successively on the silica surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call