Abstract

Density functional theory (DFT) at the hybrid B3LYP level has been applied to Ge10z germanium clusters (z = -6, -4, -2, 0, +2, +4, +6) starting from 12 different initial configurations. The D4d 4,4-bicapped square antiprism found experimentally in B10H102- and other 10-vertex clusters with 22 skeletal electrons is calculated for the isoelectronic Ge102- to be the global minimum by more than 15 kcal/mol. The global minima found for electron-rich clusters Ge104- and Ge106- are not those known experimentally. However, experimentally known structures for nido-B10H14 and the pentagonal antiprism of arachno-Pd@Bi104+ are found at higher but potentially accessible energies for Ge104- and Ge106-. The global minimum for Ge10 is the C3v 3,4,4,4-tetracapped trigonal prism predicted by the Wade-Mingos rules and found experimentally in isoelectronic Ni@Ga1010-. However, only slightly above this global minimum for Ge10 (+3.3 kcal/mol) is the likewise C3v isocloso 10-vertex deltahedron found in metallaboranes such as (eta6-arene)RuB9H9 derivatives. Structures found for more electron-poor clusters Ge102+ and Ge104+ include various capped octahedra and pentagonal bipyramids. This study predicts a number of 10-vertex cluster structures that have not yet been realized experimentally but would be interesting targets for future synthetic 10-vertex cluster chemistry using vertex units isolobal with the germanium vertices used in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.