Abstract

We present a systematic study of 1:1 glycine-water complexes involving all possible glycine conformers. The complex geometries are fully optimized for the first time both in the gas phase and in solution using three DFT methods (B3LYP, PBE1PBE, X3LYP) and the MP2 method. We calculate the G3 energies and use them as the reference data to gauge hydrogen bond strength in the gas phase. The solvent effects are treated via the integral equation formalism-polarizable continuum model (IEF-PCM). Altogether, we locate fifty-two unique nonionized (N) structures and six zwitterionic (Z) structures in the gas phase, and fifty-five N structures and thirteen Z structures in solution. Both correlation and solvation are shown to be important in geometry determination. We found that in the gas phase, a water molecule binds more strongly to the carboxylic acid group of glycine than to its amine group, whereas in solution phase the reverse is true. The most stable Z structure is isoenergetic with the most stable N structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call