Abstract
Cyclic peptides are exciting novel hosts for chiral and molecular recognition. In this work, the inclusion complexes of cyclic decapeptide (CDP) with the 1-phenyl-1-propanol enantiomers (E-PP) are firstly studied using the density functional theory (DFT) B3LYP method. Our calculated results indicated that S(-)-1-phenyl-1-propanol (S-PP) could form a more stable inclusion complex with CDP than that of R(+)-1-phenyl-1-propanol (R-PP). The obvious differences in binding energy and thermodynamics data suggest that the cyclic decapeptide could differentiate the two enantiomers. Furthermore, molecular dynamics simulation results have supported the conclusions obtained by DFT. The current investigation shows that cyclic peptide is a desirable host molecule for chiral and molecular recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.