Abstract

In order to understand cellulose pyrolysis mechanism, the pyrolysis of β- d-glucopyranose was investigated using density functional theory methods at B3LYP/6-31++G(d,p) level. Four possible pyrolytic pathways were proposed and geometries of reactants, transition states, intermediates and products were fully optimized. In pathway 1, the products are glycolicaldehyde, acetol, CO and H 2O; in pathway 2, the products are 5-hydroxymethylfurfural and H 2O; in pathway 3, the products are levoglucosan and H 2O; in pathway 4, the products are 3,4-anhydroaltrose and H 2O. The standard thermodynamic and kinetic parameters in each reaction pathway were calculated at different temperatures. The calculation results show that all reactions are endothermic and can take place spontaneously when reaction temperature exceeds 550 K. The changes of Gibbs free energies and the activation energies of rate-determining steps in reaction pathways 1 and 2 are less than that in reaction pathways 3 and 4. The activation energy of rate-determining step in pathway 1 is 297.0 kJ/mol and the activation energy of rate-determining step in pathway 2 is 284.5 kJ/mol. Based on thermodynamics and kinetic analysis, reaction pathways 1 and 2 are major pyrolysis reaction channels and the major products of β- d-glucopyranose pyrolysis are low molecular weight compounds such as glycolicaldehyde, 5-hydroxymethylfurfural, acetol and CO. The above results are in accordance with the related experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.