Abstract

The structure and stability of quasi one-dimensional (1D) ice nanotubes (INTs) have been investigated using Density Functional Theory (DFT) based Becke's three parameter Lee-Yang-Parr exchange and correlation functional (B3LYP) method employing various basis sets. Four different INTs, namely, (4,0)-INT, (5,0)-INT, (6,0)-INT, and (8,0)-INT with different lengths have been considered in this study. The calculated stabilization energies (SEs) illustrate that the stability of INT is proportional to its length and diameter. Further, the encapsulation of various gas molecules (CO(2), N(2)O, CO, N(2), and H(2)) inside the INTs has also been investigated. The calculated SEs of different endohedral complexes reveal that all these gas molecules are stable inside the tubes. The Bader's theory of atoms in molecule (AIM) has been used to characterize intra- and inter-ring H-bonding interactions. The electron density topological parameters derived from AIM theory brings out the difference between the intra- and inter-ring H-bonds of INTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call