Abstract
Density functional theory, employing periodic slab calculations, was used to investigate the interactions of ethylene and oxygen with Pt(111) and Pt3Sn(111). The predicted energetics and structures of adsorbed species on Pt(111) are in good agreement with experimental data. The binding energies of π-bonded ethylene, di-σ-bonded ethylene, and ethylidyne species are weaker on Pt3Sn(111) than on Pt(111) by 21, 31, and 50 kJ/mol, respectively. Hence, the electronic effect of Sn on the adsorption of ethylene depends on the type of adsorption site, with adsorption on three-fold site weakened more than adsorption on two-fold and one-fold sites. Oxygen atoms bond as strongly on Pt3Sn(111) as on Pt(111), and these atoms prefer to adsorb near Sn atoms on the surface. The addition of Sn to Pt(111) leads to a surface heterogeneity, wherein ethylidyne species prefer to adsorb away from Sn atoms and oxygen atoms prefer to adsorb near Sn atoms. Implications of this surface heterogeneity on hydrocarbon reaction selectivity on Pt-based catalysts are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.