Abstract
The TD-B3LYP method and the plane-wave formalism of DFT method were applied to predict the blue luminescence and nonlinear optical effect of C-doped GaN, respectively. The introduction of carbon dopant will generate different acceptor or donor levels, which are mainly composed by p electronic state, within the energy gap of GaN. Exploring the calculated luminescence spectra based on the optimized excited-state structure, C N:GaN exhibits high luminescence intensity and has nice monochromatic property. In addition, the corresponding second-order nonlinear optical coefficients are considerable, χ (2) xzx =−15.07 pm/V and χ (2) zzz =26.91 pm/V, which are about 28 times and 50 times of the second-order optical coefficient of KDP crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.