Abstract

In this study, we have developed a protocol for exploring the vast chemical space of possible perovskites and screening promising candidates. Furthermore, we examined the factors that affect the band gap energies of perovskites. The Goldschmidt tolerance factor and octahedral factor, which range from 0.98 to 1 and from 0.45 to 0.7, respectively, are used to filter only highly cubic perovskites that are stable at room temperature. After removing rare or radioactively unstable elements, quantum mechanical density functional theory calculations are performed on the remaining perovskites to assess whether their electronic properties such as band structure are suitable for solar cell applications. Similar calculations are performed on the Ruddlesden-Popper phase. Furthermore, machine learning was utilized to assess the significance of input parameters affecting the band gap of the perovskites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call