Abstract

The redox behavior of tricyclopentadienyl- and phospholyluranium(IV) chloride complexes L(3)UCl with L = C(5)H(5) (Cp), C(5)H(4)Me (MeCp), C(5)H(4)SiMe(3) (TMSCp), C(5)H(4)(t)Bu ((t)BuCp), C(5)Me(5) (Cp*), and C(4)Me(4)P (tmp), has been investigated using relativistic density functional theory calculations, with the solvent being taken into account using the conductor-like screening model. A very good linear correlation (r(2) = 0.99) has been obtained between the computed electron affinities of the L(3)UCl complexes and the experimental half-wave reduction potentials E(1/2) related to the U(IV)/U(III) redox systems. From a computational point of view, our study confirms the crucial importance of spin-orbit coupling and solvent corrections and the use of an extended basis set in order to achieve the best experiment-theory agreement. Considering oxidation of the uranium(IV) complexes, the instability of the uranium(V) derivatives [L(3)UCl](+) is revealed, in agreement with experimental electrochemical findings. The driving roles of both the electron-donating ability of the L ligand and the U 5f orbitals on the redox properties of the complexes are brought to light. Interestingly, we found and explained the excellent correlation between variations of the uranium Hirschfeld charges following U(IV)/U(III) electron capture and E(1/2). In addition, this work allowed one to estimate theoretically the half-wave reduction potential of [Cp*(3)UCl].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.