Abstract

Lithium-ion batteries (LIBs) are widely used in various electronic devices and have garnered a huge amount of attention. In addition, evaluation of the intrinsic properties of LIB cathode materials is of considerable interest for practical applications. Therefore, through first-principles calculations based on the density functional theory, we investigated the structural, electronic, electrochemical, and kinetic properties of mixed transition metals, that is, Ni-substituted LiMnPO4 (LMP) and LiMnPO4F (LMPF) cathode materials, that is, LiMn0.5Ni0.5PO4 (LMNP) and LiMn0.5Ni0.5PO4F (LMNPF), respectively, which have not been extensively studied. We also evaluated their delithiated phases, that is, Mn0.5Ni0.5PO4 (MNP) and Mn0.5Ni0.5PO4F (MNPF). Our calculations suggest that Ni substitution significantly affected the structural and electrochemical properties. After Li insertion, the MNPF unit-cell volume increased by about 8%, lower than that of pristine MnPO4F. The Li intercalation voltage also increased in LMNP (4.27 V) and LMNPF (5.23 V). In addition, the migration barrier was calculated to be 0.4 eV for LMNPF, lower than that of LMPF. This study may provide insights for developing LMNP and LMNPF cathode materials in LIB applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.