Abstract

Density functional theory was employed for a comprehensive study that provided electronic and structural insights into the KatG catalase reaction that involves oxyheme. The catalytic role of a unique amino acid cofactor Met-Tyr-Trp (MYW) in its radical form found in KatG was thereby elucidated. It was established that the MYW-radical is flexible such that a "hinge-like opening" rotation of the Trp-107 ring with respect to the Tyr-229 ring along their covalent C-C bond is an inherent feature of its catalytic properties. Also, an H-bond between the Tyr-229 and the mobile side chain of Arg-418 further enables the catalytic events. The opening process breaks an H-bond between the N-H of Trp-107 and the inner oxygen of the Fe-O2 (oxyheme) complex present in the closed conformation of the MYW-radical. This motion lowers the spin-crossing energy barrier between the ground state and the catalytically active high-spin states and enables electron transfer from the oxyheme group to the MYW-radical. The release of molecular oxygen is thereby catalyzed and leaves ferric-heme poised for another catalytic cycle. The energy barrier for the oxyheme state to complete the catalytic event, when assisted by the radical opening process, is thereby reduced and estimated to be 5.6 kcal/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.