Abstract

AbstractA theoretical formalism to describe interface adhesion phenomena between materials has been developed. In this model electron densities, potentials, and adhesion energies of thin metal films at metal–semiconductor and metal–insulator interfaces are derived through a partially self–consistent calculation. The theory is based on a density–functional formalism applied to a simple model of the system in which the metal is replaced by a uniform positive background and the semiconductor by a continuum with a static dielectric constant. Numerical results of the metal electron density distribution and effective potential of Au–vacuum and Au–GaAs system, and the adhesion energy at Au–GaAs interface are presented. The interface energies are then used to estimate the adhesion strength and compare with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.