Abstract
The celebrated work of Onsager on hard particle systems, based on the truncated second order virial expansion, is valid at relatively low volume fractions for large aspect ratio particles. While it predicts the isotropic-nematic phase transition, it does not provide a realistic equation of state in that the pressure remains finite for arbitrarily high densities. In this work, we derive a mean field density functional form of the Helmholtz free energy for nematics with hard core repulsion. In addition to predicting the isotropic-nematic transition, the model provides a more realistic equation of state. The energy landscape is much richer, and the orientational probability distribution function in the nematic phase possesses a unique feature-it vanishes on a nonzero measure set in orientation space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.