Abstract
We use first principles calculations and elasticity theory to study hydrogen aggregation in silicon. We discuss possible structures of small hydrogen complexes containing 4–12 H atoms and demonstrate that the lowest-energy structure is the hydrogenated glide dislocation loop. We employ elasticity theory of dislocation interaction to show that the dislocation loop is likely to grow in one dimension forming the dislocation dipole. Extending the study to larger numbers of H, we show that the hydrogenated glide dislocation dipole is favoured for H aggregates infinite in one dimension. We discuss the route for its expansion leading to the formation of two-dimensional H aggregates or platelets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.