Abstract

The molecular structure and vibrational spectra of bis-tetrapropyl-ammonium hexachloro–dizincate in the ground state have been investigated by density functional method (DFT) using the B3LYP method with the LanL2DZ and LanL2MB basis set. Infrared and Raman spectroscopes of the [N(C3H7)4]2Zn2Cl6 compound have been measured at room temperature in the frequencies range (3500–400 cm−1) and (3500–100 cm−1), respectively. The optimized geometric shows that the calculated values obtained by B3LYP/LanL2DZ basis are in much better agreement with the experimental data than those obtained by B3LYP/LanL2MB. Actually the theoretical vibrational spectra (B3LYP/LanL2DZ) of the title compound have been interpreted by means of potential energy distribution (PED) which is in good agreement with the experimental data. The comparison of the infrared spectrum of the tetrapropyl-ammonium chloride ligand with those of the bis-tetrapropyl-ammonium hexachloro-dizincate compound confirms an increase of the wavenumber in the [N(C3H7)4]2Zn2Cl6 compound. This can be explained by an increase of the electrostatic interactions of the [N(C3H7)4]Cl ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.