Abstract

The surface oxygen vacancy formation energy (EOvac) is an important parameter in determining the catalytic activity of metal oxides. Estimating these energies can therefore lead to data-driven design of promising catalyst candidates. In the present study, we determine EOvac for various insulating and semiconducting oxides. Statistical investigations indicate that the band gap, bulk formation energy, and electron affinity are factors that strongly influence EOvac. Electrons enter defect states after O desorption, and these states can be in the valence band, mid-gap, or in the conduction band. Subsequent adsorption of O2, NO, CO, CO2, and H2 molecules on an O-deficient surface is also investigated. These molecules become preferentially adsorbed at the defect sites, and EOvac is identified as the dominant factor that determines the adsorption mode as well as a descriptor that shows good correlation with the adsorption energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.