Abstract

In this paper, we have employed density functional theory (DFT) to investigate the adsorption mechanisms of atomic hydrogens on the sidewalls of (3, 3) single-wall carbon nanotubes (CNTs) which have vacancy defects. All the calculations were performed using the generalized gradient approximation (GGA) with the Perdew, Burke and Ernzerhof (PBE) correlation functional.Our results show that hydrogen atoms can chemically adsorb on the defective nanotube. Bonding energy of per hydrogen atom decreases with the number of adsorbed hydrogen atoms. The hydrogen atoms will enhance the electrical conductivity of the (3, 3) nanotube. Besides one hydrogen atom adsorbing on the nanotube with a vacancy defect (MVD), hydrogen atoms move towards the MVD of the nanotube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.