Abstract

The catalyst coking and production of undesired products during the transformation of propane into propylene have been the critical challenges in the on purpose approach of propylene production. The mechanism contributing to this challenge was theoretically investigated through the analysis of cracking reaction routes. The study carried out employed the use of a density functional theory and cluster approach in order to understand the reactions that promote coking of the catalyst and in the search for the kinetic and thermodynamic data of the reaction mechanism involved in the process over Cr2O3. The ratedetermining step and feasible route that easily promote the production of small hydrocarbons like ethylene, methane, and many others were identified. The study suggests Cr-site substitution or co-feeding of oxygen can aid in preventing deep dehydrogenation in the conversion of propane to propylene. This information will help in improving the Cr2O3 catalyst performance and further increase the production yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call