Abstract

We use density functional theory based molecular-dynamics simulations to study the aqueous solvation of the fluoride anion. Our studies are focused on the first solvation shell and have resulted in detailed information on its structural and dynamical properties. The fluoride ion leads to the formation of a rigid solvation shell, qualitatively consistent with simulation and experimental studies, classifying fluoride as a "structure making" particle. However, quantitatively we find the solvation shell to be less structured and more mobile than predicted from empirical force-field simulation. The influence on the intramolecular electronical and structural properties of water is minimal, as observed for other halogens. We propose two distinct mechanisms for the exchange of bulk and first solvation shell water molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.