Abstract

Evaluation of the insulating properties of polymers, such as the dielectric constant and dissipation factor, is crucial in electronic devices, including field-effect transistors and wireless communication applications. This study applies density functional theory (DFT) to predict the dielectric constant of soluble polyimides (SPIs). Various SPIs containing trifluoromethyl groups in the backbone with different pendant types, numbers, and symmetries are successfully synthesized, and their dielectric constants are evaluated and compared with the DFT-estimated values. Two types of DFT-optimized SPIs, single-chain and stacked-chain models, are used to describe the local geometries of the SPIs. In addition, to reveal the relationship between the molecular structure and dielectric constant, further investigations are conducted by considering the dielectric constant of composing ionic and electronic components. The DFT-estimated static dielectric constant of the single-chain model accurately reproduces the corresponding experimental value with at least 80% accuracy. Our approach provides a rational and accelerated strategy to evaluate polymer insulators for electronic devices based on cost-effective DFT calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call