Abstract

Abstract A complete catalytic cycle for H2 oxidation on a model emulating the active site of Fe-only hydrogenases, [Fe2(μ-DTMA)(CO)4(CN)2]2− (DTMA = SCH2NHCH2S), has been investigated using density functional theory (DFT). Our calculations show that the bridged CO group in the fully reduced species does not play a significant role on the H2 activation. According to the studied mechanism, the rate-determining step is neither kinetically nor thermodynamically favorable for the second proton transfer. A modified model aiming to improve the catalytic efficiency has been designed and a plausible catalytic mechanism is suggested. In the new model, [Fe2(μ-PDTN)(CO)4(CN)2]2− (PDTN = SCH2CH(NH2)CH2S), a shorter proton transfer path has been obtained by changing the base position and the process is significantly facilitated. In the modified catalytic cycle, the highest barrier for H2 oxidation is only 7.90 kcal mol−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.