Abstract

We present a nonlocal density-functional theory of polymeric fluids consisting of freely jointed Lennard-Jones chains with explicit consideration of the segment size, van der Waals attraction, and structural correlations due to chain connectivity. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the short-ranged repulsion and the first-order thermodynamic perturbation theory for chain connectivity. The contribution of the long-ranged attraction to the Helmholtz energy functional is taken into account using a quadratic density expansion with the direct correlation function obtained from the first-order mean-spherical approximation. The numerical performance of the density-functional theory is compared well with the simulation results from this work as well as those from the literature for the segment-level density profiles and correlation functions of Lennard-Jones chains in slit pores, near isolated nanoparticles, or in bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.