Abstract

We use first principles methods to study static and dynamical mechanical properties of the ferroelectric polymer Poly(vinylidene fluoride) (PVDF) and its copolymer with trifluoro ethylene (TrFE). We use density functional theory [within the generalized gradient approximation (DFT-GGA)] to calculate structures and energetics for various crystalline phases for PVDF and P(VDF-TrFE). We find that the lowest energy phase for PVDF is a non-polar crystal with a combination of trans (T) and gauche (G) bonds; in the case of the copolymer the role of the extra (bulkier) F atoms is to stabilize T bonds. This leads to the higher crystallinity and piezoelectricity observed experimentally. Using the MSXX first principles-based force field (FF) with molecular dynamics (MD), we find that the energy barrier necessary to nucleate a kink (gauche pairs separated by trans bonds) in an all-T crystal is much lower (14.9 kcal/mol) in P(VDF-TrFE) copolymer than in PVDF (24.8 kcal/mol). This correlates with the observation that the polar phase of the copolymer exhibits a solid-solid a transition to a non-polar phase under heating while PVDF directly melts. We also studied the mobility of an interface between a polar and non-polar phases under uniaxial stress; we find a lower threshold stress and a higher mobility in the copolymer as compared with PVDF. Finally, considering plastic deformation under applied shear, we find that the chains for P(VDF-TrFE) have a very low resistance to sliding, particularly along the chain direction. The atomistic characterization of these "unit mechanisms" provides essential input to mesoscopic or macroscopic models of electro-active polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call