Abstract

The reduction of NOx is crucial for reducing air pollution from vehicle exhaust. In the presence of Rh-based catalysts, the dissociation of NO and the formation of N2O and N2 constitute the important elementary steps of NOx reduction. The present study used density functional theory (DFT) to investigate the catalytic performances of the Rh(111) surface and Rh55 and Rh147 clusters toward these elementary reactions. The NO dissociation reaction was found to have minimum activation barriers (Ea) of 0.63, 0.68, and 1.25 eV on Rh55, Rh147, and Rh(111), respectively. Therefore, it is the fastest on small Rh clusters. In contrast, the N2 formation reaction is relatively inefficient on small clusters, with corresponding Ea values of 2.14, 1.79, and 1.71 eV. Because of the stronger binding of N atoms to the Rh clusters than to the Rh surface, N2 formation through the recombination of N atoms has a higher Ea value on Rh clusters. The calculated reaction rate constants confirmed that small Rh clusters are less react...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.