Abstract

Several zerovalent lanthanide bis(arene)-sandwich complexes, Ln(η6-C6H6)2, Ln = La, Ce, Eu, Gd and Lu, have been studied by means of density functional theory. The calculated geometries are in good agreement with experiment. The calculated dissociation energies of the bond Ln-(η6-C6H6) may be considerably underestimated, but they correctly reveal the variation regularity. The bonding in these molecules can be described in terms of a relatively weak π-electron donation from benzene to Ln and a stronger electron back-donation from Ln 5d to the benzene π* orbitals. During bond formation, there is electron promotion from Ln 6s to 5d instead of from 4f to 5d, in opposition to the proposal of Anderson et al. The relativistic effect only slightly influences the molecular geometry, but decreases the bonding energy considerably through lowering the Ln 6s level and raising the 5d level. It enhances the trend of the bonding energy to decrease along the lanthanide series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call