Abstract

We have studied the energetic and structural stability of the interaction of molecular oxygen with small neutral, anionic and cationic silver clusters, Ag(n) (3 < or = n < or = < 8). The calculations have been carried out using a linear combination of atomic Gaussian-type orbitals within the density functional theory as it is implemented in the demon-ks3.5 code. The O2 molecule has been placed in different positions surrounding the cluster, in order to increase the configurational space of the structural minima. We have found that the oxidized cation and neutral clusters undergo a 2D-3D structural transition even before than the nonoxidized counterparts. Moreover, our results show that the adsorption energies on the cationic and neutral silver oxide clusters manifest an odd-even alternation pattern. Likewise, the average magnetic moment of the O2 radical in the charged and neutral silver environment tends to be greater than the charged and neutral bare diatomic oxygen molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call