Abstract

We investigated the optical properties of iron and cobalt mono-nitrides in rock-salt and zinc-blende crystal structures. Density functional theoretic calculations were performed using the linear muffin tin orbital method in the generalized gradient approximation for exchange and correlation. The optical response was characterized by means of the dielectric function, calculated for each structural phase in the different magnetic arrangements found experimentally and theoretically. The origin of the main absorption peaks was traced back to particular interband transitions after a careful analysis of the band structures and orbital- and atom- projected electronic densities of states. The optical response of both nitrides with this structure in the nomagnetic state is very similar at photon frequencies below 2eV, but differ at high frequencies. In zinc-blende structure, both compounds are nomagnetic and present an optical gap of about 0.5eV for interband transitions in their optical response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.