Abstract
The conformational space of (4)C(1) alpha- and beta-d-glucuronic acid was scanned by HF/3-21G(p) calculations followed by optimization of the 15 most stable structures for each, using the B3LYP density functional theory method in conjunction with a diffuse polarized valence triple-zeta basis set. We found a general preference of the alpha anomers in the isolated molecules in agreement with the large endo-anomeric hyperconjugation effects in these structures. From the other intramolecular interactions (exo-anomeric hyperconjugation, hydrogen-bonding, dipole-dipole, and steric interactions), the effect of the hydrogen bonding is the most pronounced and plays a major role in determining the stability order within the alpha and beta series. The most stable conformer of both alpha and beta (4)C(1) d-glucuronic acid is the structure with the maximum number (5) of intramolecular hydrogen bonds. Introduction of solvent (water) effects by the SCI-PCM model resulted in two characteristic changes of the energetic properties: the gas-phase stability order changed considerably, and the energy range of the 15 most stable conformers decreased from 30 to 15 kJ/mol. The geometrical parameters reflect well the superimposed effects of hyperconjugation and hydrogen-bonding interactions. Most characteristics are the variations of the C-O bond distances (within a range of 0.04 A) upon the combined intramolecular effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.