Abstract

The β″ phase is the major hardening precipitate in Al-Mg-Si alloys. It was studied by atomistic calculations based on density functional theory (DFT), using an atomistic model where the precipitate was embedded in an Al matrix. This allowed quantifying and visualizing the coherency strain in the matrix and within the precipitates. The elastic strain was found to decrease exponentially in the matrix as a function of distance from the precipitate interface. The formation enthalpy of several different chemical compositions of β″ was calculated, and the most stable composition was found to be Mg5Al2Si4. A study of the calculated valence charge density and electron localization function showed that the covalency network between Si-atoms in the precipitate structure is broken when the precipitate contains Al.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.