Abstract

A plane-wave density functional theory (DFT) calculations have been performed to investigate structural and electronic properties of TaSin (n=1–3, 12) clusters supported by graphene surface. The resulting adsorption structures are described and discussed in terms of stability, bonding, and electron transfer between the cluster and the graphene. The TaSin clusters on graphene surface favor their free-standing ground-state structures. Especially in the cases of the linear TaSi2 and the planar TaSi3, the graphene surface may catalyze the transition of the TaSin clusters from an isomer of lower dimensionality into the ground-state structure. The adsorption site and configuration of TaSin on graphene surface are dominated by the interaction between Ta atom and graphene. Ta atom prefers to adsorb on the hollow site of graphene, and Si atoms tend to locate on the bridge site. Further, the electron transfer is found to proceed from the cluster to the surface for n=1 and 2, while its direction reverses as n>2. For the case of TaSi, chemisorption is shown to prevail over physisorption as the dominant mode of surface–adsorbate interaction by charge density analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.