Abstract

Abstract Geometrical structures, relative stabilities and electronic properties of neutral, cationic and anionic pure gold A u n + 1 λ {\rm{A}}u_{n + 1}^\lambda and Ag-doped bimetallic AgAu n λ ( λ = 0 , ± 1 ; n = 1 - 12 ) {\rm{AgAu}}_n^\lambda \left( {\lambda = 0, \pm 1;n = 1 - 12} \right) clusters have been systematically investigated by using density functional theory methodology. The optimized structures show that planar to three-dimensional structural transition occurs at n = 5 for cationic clusters. Due to strong relativistic effect of Au clusters, the ground state configurations of neutral and anionic bimetallic clusters favor planar geometry till n = 12. Silver atoms tend to occupy the most highly coordinated position and form the maximum number of bonds with Au atoms. The computed HOMO-LUMO energy gaps, fragmentation energies and second-order difference of energies show interesting odd-even oscillation behavior. The result indicates that AgAu5, AgAu 2 + {\rm{AgAu}}_2^ + and AgAu 2 - {\rm{AgAu}}_2^ - are the most stable clusters in this molecular system. The DFT based descriptors of bimetallic clusters are also discussed and compared with pure gold clusters. The high value of correlation coefficient between HOMO-LUMO energy gaps and DFT based descriptors supports our analysis. A good agreement between experimental and theoretical data has been obtained in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.