Abstract

First principle calculations of elastic and thermal properties of zinc-blende specimens within HgxZn1–xS, HgxZn1−xSe and HgxZn1−xTe ternary systems are executed. Elastic stiffness constants decrease non-linearly with increasing Hg-concentration in each system. Each cubic sample is mechanically and dynamically stable, elastically anisotropic, compressible against elastic deformation, ductile and fairly plastic. Hardness of specimens in each system reduces with enhancement in Hg-composition. Mixed kind of bonding with dominancy of covalent over ionic in most cases, bond bending over stretching and central type of interatomic bonding forces are calculated. In each system, covalency, Debye temperature and frequency, Debye temperature for acoustic phonon, thermal conductivity and melting temperature of specimens decreases, while Philip ionicity and Gruneisen parameter increases with enhancing Hg-concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.