Abstract

Modified inhomogeneous statistical associating fluid theory (iSAFT) density functional theory is extended to dendrimer molecules in solvents of varying quality. The detailed structures of isolated dendrimers in implicit solvent are calculated and have a semi-quantitative agreement with simulation results available in the literature. The dendrimers form dense-core structures under all conditions, while their radius of gyration follows different scaling laws. Factors that affect the quality of the solvent are systematically studied in the explicit solvent case. It is found that the solvent size, density, chemical affinity and temperature all play a role in determining a solvent to be good or poor. New molecular dynamics simulations are performed to validate the iSAFT results. Our results provide insight into the phase behavior of dendrimer solutions as well as guidance in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call