Abstract

Layered perovskite oxyhalides Bi4MO8X (M = Nb and Ta, X = Cl, Br, and I) have recently emerged as suitable photocatalysts for the photocatalytic water splitting reaction and degradation of organics. Here, we present a comparative study on the crystal structure, electronic structure, water adsorption, and oxygen evolution reaction of these systems. The calculated band gaps using hybrid density functional method HSE06 are smaller than 2.75 eV and increase with the increase of X atomic number, which is in excellent agreement with experimental data. All Bi4MO8X systems possess indirect band gaps, which benefits the separation of photogenerated electron–hole pairs. The density of states reveals that, for all the Bi4MO8X cases, the valence band maximum is mostly composed of O 2p states rather than X np states, which can explain the observed stability of these materials against photocorrosion. It is found that the molecular adsorption of water is energetically favorable on Bi4MO8X(001) surfaces. As a result, the...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call