Abstract
We calculate from first principles the electronic structure, relaxation and magnetic moments in small Fe particles, applying the numerical local orbitals method in combination with norm-conserving pseudopotentials. The accuracy of the method in describing elastic properties and magnetic phase diagrams is tested by comparing benchmark results for different phases of crystalline iron to those obtained by an all-electron method. Our calculations for the bipyramidal Fe_5 cluster qualitatively and quantitatively confirm previous plane-wave results that predicted a non-collinear magnetic structure. For larger bcc-related (Fe_35) and fcc-related (Fe_38, Fe_43, Fe_62) particles, a larger inward relaxation of outer shells has been found in all cases, accompanied by an increase of local magnetic moments on the surface to beyond 3 mu_B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The European Physical Journal D - Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.