Abstract

Density functional resonance theory (DFRT) is a complex-scaled version of ground-state density functional theory (DFT) that allows one to calculate the in-principle exact resonance energies and lifetimes of metastable anions. In this formalism, the energy and lifetime of the lowest-energy resonance of unbound systems is encoded into a complex "density" that can be obtained via complex-coordinate scaling. This complex density is used as the primary variable in a DFRT calculation, just as the ground-state density would be used as the primary variable in DFT. As in DFT, there exists a mapping of the N-electron interacting system to a Kohn-Sham system of N noninteracting particles. This mapping facilitates self-consistent calculations with an initial guess for the complex density, as illustrated with an exactly solvable model system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call