Abstract
Abstract In order to explore the possibility of using 2D nanostructures as biosensors , we have studied the adsorption characteristics of nucleotide bases on armchair germanene nanoribbon (AGeNR) using density functional theory with several approximations of exchange-correlation functionals with the addition of dispersion correction. It has been found that the dispersion interactions have the key role in characterizing adsorption phenomena through the non-covalent interactions. The structural and electronic properties of the nucleobase-nanoribbon complexes have been investigated along with the study of the dependence of binding energies on ribbon widths and hence the edge (armchair or zigzag) effects. A physisorption process with binding energies in the range of about 0.83–1.37 eV has been found for 10-AGeNR, which alters the electronic and structural properties of the subsystems indicating the potential use of these complexes as biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.