Abstract
The reactions of BH2+ with propylene (CH2=CHCH3) to form both the adducts BC3H8+ and the H2-elimination products BC3H6+ + H2 have been investigated at the density functional B3LYP/6-311G(d,p) level of theory. It is shown that the electrophilic attacks of BH2+ towards two olefinic carbons of H2C=CHCH3 and two subsequent 1,3-H-shifts may form four low-lying BC3H8+ isomers (with the relative energies in parentheses in kcal/mol): 1 BH2+.CH2CHCH3 (0.0), 1' BH2+.CH3CHCH2 (6.3), 3 BHCH2CH2CH3+ (4.3), and 4 BHCH(CH3)2+ (5.0), respectively. On the other hand, further H2-eliminations may also occur easily between B-C bonds of isomers 1 and 1' and between C-C bonds of isomers 3 and 4 to form two dissociation products (P1) HBCHCHCH3+ + H2 and (P2) HBC(CH3)CH2+ + H2, with H2-elimination from isomer 1 to be energetically most favorable. According to our calculated mechanism, the collisional stabilization processes of low-lying isomers 1, 1', 3, and 4 may compete extensively with their H2-eliminations processes for the title reaction, leading mainly to some linear carborane cations. This study may be helpful for understanding the stereochemical aspects of borohydride cations towards alkylenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.